Part Number Hot Search : 
C74VC HC4053A 01100 HD74ACT 447AH HD647 IMH21 78M10
Product Description
Full Text Search
 

To Download HYE18L512160BF-75 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 December 2006
HYB18L512160BF-7.5 HYE18L512160BF-7.5
DRAMs for Mobile Applications 512-Mbit Mobile-RAM RoHS compliant
Data S heet
Rev. 1.22
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
HYB18L512160BF-7.5, HYE18L512160BF-7.5 Revision History: 2006-12, Rev. 1.22 Page All 51 54 50 Subjects (major changes since last revision) Qimonda update IDD7 change from 20 to 25 Updated the package drawing. Table 20: Delete note 6 Change Note 6 from (tT -1) to [0.5 x (tT -1)] . - IDD4: change from 60 to 90 - IDD7: change from 40 to 20 - add a note: Value shown is typical - Updated the package drawing. - package name: change from P-TFBGA to PG-TFBGA - Remove all references to HYB18L512160BC-7.5 and HYE18L512160BC-7.5
Previous Version: 2005-11, Rev. 1.11
Previous Revision: Rev. 1.1
51
54 All
Previous Version: Rev. 1.0
We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: techdoc@qimonda.com
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07 01132005-06IU-IGVM
2
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
1
1.1
* * * * * * * * * * * * *
Overview
Features
4 banks x 8 Mbit x 16 organization Fully synchronous to positive clock edge Four internal banks for concurrent operation Programmable CAS latency: 2, 3 Programmable burst length: 1, 2, 4, 8 or full page Programmable wrap sequence: sequential or interleaved Programmable drive strength Auto refresh and self refresh modes 8192 refresh cycles / 64 ms Auto precharge Commercial (0C to +70C) and Extended (-25C to +85C) operating temperature range Dual-Die 54-ball PG-TFBGA package (12.0 x 8.0 x 1.2 mm) RoHS Compliant Products1)
Power Saving Features * * * * * Low supply voltages: VDD = 1.70 V to 1.95 V, VDDQ = 1.70 V to 1.95 V Optimized self refresh (IDD6) and standby currents (IDD2 / IDD3) Programmable Partial Array Self Refresh (PASR) Temperature Compensated Self-Refresh (TCSR), controlled by on-chip temperature sensor Power-Down and Deep Power Down modes
TABLE 1
Performance
Part Number Speed Code Speed Grade Access Time (tACmax) Clock Cycle Time (tCKmin) CL = 3 CL = 2 CL = 3 CL = 2 - 7.5 133 6.0 7.0 7.5 9.5 Unit MHz ns ns ns ns
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
3
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
TABLE 2
Memory Addressing Scheme
Item Banks Rows Columns Addresses BA0, BA1 A0 - A12 A0 - A9
TABLE 3
Ordering Information
Type1) HYB18L512160BF-7.5 HYE18L512160BF-7.5 Package PG-TFBGA-54 PG-TFBGA-54 Description 133 MHz 4 Banks x 8 Mbit x 16 LP-SDRAM 133 MHz 4 Banks x 8 Mbit x 16 LP-SDRAM Standard Temperature Range Extended Temperature Range
1) HY[B/E]: Designator for memory products (HYB: Standard temp range, HYE: extended temp. range) 18L: 1.8 V Mobile-RAM 512: 512 MBit density 160: 16 bit interface width B: die revision F: green product -7.5: speed grade(s): min. clock cycle time
Rev. 1.22, 2006-12 01132005-06IU-IGVM
4
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
1.2
Pin Configuration
FIGURE 1
Standard Ballout 512-Mbit Mobile-RAM
1.3
Description
The HY[B/E]18L512160BF is a high-speed CMOS, dynamic random-access memory containing 536,870,912 bits. It is internally configured as a quad-bank DRAM. The HY[B/E]18L512160BF achieves high speed data transfer rates by employing a chip architecture that prefetches multiple bits and then synchronizes the output data to the system clock. Read and write accesses are burst-oriented. Accesses start at a selected location and continue for a programmed number of locations (1, 2, 4, 8 or full page) in a programmed sequence. The device operation is fully synchronous: all inputs are registered at the positive edge of CLK. The HY[B/E]18L512160BF is specially designed for mobile applications. It operates from a 1.8 V power supply. Power consumption in self refresh mode is drastically reduced by an On-Chip Temperature Sensor (OCTS); it can further be reduced by using the programmable Partial Array Self Refresh (PASR). A conventional data-retaining Power Down (PD) mode is available as well as a non-data-retaining Deep Power Down (DPD) mode. The HY[B/E]18L512160BF is housed in a Dual-Die 54-ball PG-TFBGA package. It is available in Commercial (0 C to +70 C) and Extended (-25 C to +85 C) temperature ranges.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
5
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 2
Functional Block Diagram
Rev. 1.22, 2006-12 01132005-06IU-IGVM
6
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
1.4
Pin Definition and Description
TABLE 4
Pin Description
Ball CLK CKE Type Input Input Detailed Function Clock: all inputs are sampled on the positive edge of CLK. Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals, device input buffers and output drivers. Taking CKE LOW provides: * PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle) * ACTIVE POWER-DOWN (row active in any bank) * SUSPEND (access in progress). Input buffers, excluding CLK and CKE are disabled during power-down. Input buffers, excluding CKE are disabled during SELF REFRESH. Chip Select: All commands are masked when CS is registered HIGH. CS provides for external bank selection on systems with multiple memory banks. CS is considered part of the command code. Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. Data Inputs/Output: Bi-directional data bus (16 bit) Input/Output Mask: Input mask signal for WRITE cycles and output enable for READ cycles. * For WRITEs, DQM acts as a data mask when HIGH. * For READs, DQM acts as an output enable and places the output buffers in High-Z state when HIGH (two clocks latency). * LDQM corresponds to the data on DQ0 - DQ7; UDQM to the data on DQ8 - DQ15. Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVATE, READ, WRITE or PRECHARGE command is being applied to. BA0, BA1 also determine which mode register will be loaded during a MODE REGISTER SET command (MRS or EMRS). Address Inputs: A0 - A12 define the row address during an ACTIVE command cycle. A0 A9 define the column address during a READ or WRITE command cycle. In addition, A10
CS
Input
RAS, CAS, WE DQ0 - DQ15 LDQM, UDQM
Input I/O Input
BA0, BA1
Input
A0 - A12
Input
(= AP) controls the Auto Precharge operation at the end of the burst read or write cycle. During a PRECHARGE command, A10 (= AP), in conjunction with BA0, BA1, control which bank(s) will be precharged:
* if A10 is HIGH, all four banks will be precharged regardless of the state of BA0 and BA1 * if A10 is LOW, BA0, BA1 define the bank to be precharged. During MODE REGISTER SET commands, the address inputs hold the opcode to be loaded.
VDDQ VSSQ VDD VSS
N.C.
Supply Supply Supply Supply -
I/O Power Supply: Isolated power for DQ output buffers for improved noise immunity: VDDQ = 1.70 V to 1.95 V I/O Ground Power Supply: Power for the core logic and input buffers, VDD = 1.70 V to 1.95 V Ground No Connect
Rev. 1.22, 2006-12 01132005-06IU-IGVM
7
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2
Functional Description
READ and WRITE accesses to the Mobile-RAM are burst oriented. Accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed:
* BA0, BA1 select the banks * A0 - A12 select the row The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access. Prior to normal operation, the Mobile-RAM must be initialized. The following subsections provide detailed information covering device initialization, register definition, command description, and device operation.
2.1
Power On and Initialization
The Mobile-RAM must be powered up and initialized in a predefined manner (see Figure 3). Operational procedures other than those specified may result in undefined operation.
FIGURE 3
Power-Up Sequence and Mode Register Sets
VDD VDDQ 200s CLK CKE tCK tRP tRFC tRFC tMRD tMRD
Command Address A10
NOP
PRE
ARF
ARF
MRS CODE
MRS CODE CODE
NOP ACT NOP RA NOP RA
All Banks
CODE
BA0,BA1
BA0=L BA1=L BA0=L BA1=H
NOP BA
DQM DQ
(H Level) (High-Z)
Power-up: VDD and CK stable
Load Mode Register
Load Ext. Mode Register = Don't Care
Rev. 1.22, 2006-12 01132005-06IU-IGVM
8
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
1. First, device core power (VDD) and device IO power (VDDQ) must be brought up simultaneously. Typically VDD and VDDQ are driven from a single power converter output. Assert and hold CKE and DQM to a HIGH level. 2. After VDD and VDDQ are stable and CKE is HIGH, apply stable clocks. 3. Wait for 200s while issuing NOP or DESELECT commands. 4. Issue a PRECHARGE ALL command, followed by NOP or DESELECT commands for at least tRP period. 5. Issue two AUTO REFRESH commands, each followed by NOP or DESELECT commands for at least tRFC period. 6. Issue two MODE REGISTER SET commands for programming the Mode Register and Extended Mode Register, each followed by NOP or DESELECT commands for at least tMRD period (the order in which both registers are programmed is not important). Following these steps, the Mobile-RAM is ready for normal operation.
2.2
Register Definition
2.2.1
Mode Register
The Mode Register is used to define the specific mode of operation of the Mobile-RAM. This definition includes: * the selection of a burst length (bits A0-A2) * a burst type (bit A3) * a CAS latency (bits A4-A6) * a write burst mode (bit A9) The Mode Register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0) and will retain the stored information until it is programmed again or the device loses power. The Mode Register must be loaded when all banks are idle. Also, the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements results in unspecified operation. Reserved states should not be used, as unknown operation or incompatibility with future versions may result.
TABLE 5
MR Mode Register Definition (BA[1:0] = 00B)
Field WB Bits 9 Type w Description Write Burst Mode 0 Burst Write 1 Single Write CAS Latency 010 2 011 3 Note: All other bit combinations are RESERVED.
CL
[6:4]
w
Rev. 1.22, 2006-12 01132005-06IU-IGVM
9
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
Field BT
Bits 3
Type w
Description Burst Type 0 Sequential 1 Interleaved Burst Length 000 1 001 2 010 4 011 8 111 full page (Sequential burst type only) Note: All other bit combinations are RESERVED.
BL
[2:0]
w
2.2.1.1
Burst Length
READ and WRITE accesses to the Mobile-RAM are burst oriented, with the burst length being programmable. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4, 8 locations are available for both the sequential and interleaved burst types. A full-page burst mode is available for the sequential burst type. When a READ or WRITE command is issued, a block of columns equal to the burst length is selected. All accesses for that burst take place within this block, meaning that the burst wrap within the block if a boundary is reached. The block is uniquely selected by: * A1-A9 when the burst length is set to two * A2-A9 when the burst length is set to four * A3-A9 when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Full page bursts wrap within the page if the boundary is reached. Please note that full page bursts do not self-terminate; this implies that full-page read or write bursts with Auto Precharge are not legal commands.
TABLE 6
Burst Definition
Burst Length Starting Column Address A2 2 4 0 0 1 1 A1 A0 0 1 0 1 0 1 Sequential 0-1 1-0 0-1-2-3 1-2-3-0 2-3-0-1 3-0-1-2 Order of Accesses Within a Burst Interleaved 0-1 1-0 0-1-2-3 1-0-3-2 2-3-0-1 3-2-1-0
Rev. 1.22, 2006-12 01132005-06IU-IGVM
10
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
Burst Length
Starting Column Address A2 A1 0 0 1 1 0 0 1 1 n A0 0 1 0 1 0 1 0 1 n Sequential
Order of Accesses Within a Burst Interleaved 0-1-2-3-4-5-6-7 1-0-3-2-5-4-7-6 2-3-0-1-6-7-4-5 3-2-1-0-7-6-5-4 4-5-6-7-0-1-2-3 5-4-7-6-1-0-3-2 6-7-4-5-2-3-0-1 7-6-5-4-3-2-1-0 not supported
8
0 0 0 0 1 1 1 1
0-1-2-3-4-5-6-7 1-2-3-4-5-6-7-0 2-3-4-5-6-7-0-1 3-4-5-6-7-0-1-2 4-5-6-7-0-1-2-3 5-6-7-0-1-2-3-4 6-7-0-1-2-3-4-5 7-0-1-2-3-4-5-6 Cn, Cn+1, Cn+2, ...
Full Page Notes 1. 2. 3. 4. 5.
n
For a burst length of 2, A1-Ai select the two-data-element block; A0 selects the first access within the block. For a burst length of 4, A2-Ai select the four-data-element block; A0-A1 select the first access within the block. For a burst length of 8, A3-Ai select the eight-data-element block; A0-A2 select the first access within the block. For a full page burst, A0-Ai select the starting data element. Whenever a boundary of the block is reached within a given sequence, the following access wraps within the block.
2.2.1.2
Burst Type
Accesses within a given burst may be programmed to be either sequential or interleaved. This is referred to as the burst type and is selected via bit A3. The ordering of accesses within a burst is determined by: * the burst length * the burst type * the starting column address This is listed in Table 6.
2.2.1.3
Read Latency
The Read latency, or CAS latency, is the delay, in clock cycles, between the registration of a READ command and the availability of the first segment of output data. The latency can be programmed to 2 or 3 clocks. If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available with clock edge n + m (for more detailed information, please refer to the READ command description).
2.2.1.4
Write Burst Mode
When A9 = 0, the burst length programmed via A0-A2 applies to both read and write bursts; when A9 = 1, write accesses consist of single data elements only.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
11
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.2.1.5
Extended Mode Register
The Extended Mode Register controls additional low power features of the device. These include: * the Partial Array Self Refresh (PASR, bits A0-A2)) * the Temperature Compensated Self Refresh (TCSR, bits A3-A4)) * the drive strength selection for the DQs (bits A5-A6). The Extended Mode Register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 1) and will retain the stored information until it is programmed again or the device loses power. The Extended Mode Register must be loaded when all banks are idle. Additionally, the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements result in unspecified operation. Reserved states should not be used, as unknown operation or incompatibility with future versions may result.
TABLE 7
EMR Extended Mode Register (BA[1:0] = 10B)
Field DS Bits [6:5] Type w Description Selectable Drive Strength 00B Full Drive Strength 01B Half Drive Strength Note: All other bit combinations are RESERVED. Temperature Compensated Self Refresh XX Superseded by on-chip temperature sensor (see text) Partial Array Self Refresh 000B all banks 001B 1/2 array (BA1 = 0) 010B 1/4 array (BA1 = BA0 = 0) 101B 1/8 array (BA1 = BA0 = RA12 = 0) 110B 1/16 array (BA1 = BA0 = RA12 = RA11 = 0) Note: All other bit combinations are RESERVED.
TCSR PASR
[4:3] [2:0]
w w
Rev. 1.22, 2006-12 01132005-06IU-IGVM
12
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.2.1.6
Partial Array Self Refresh (PASR)
Partial Array Self Refresh is a power-saving feature specific to Mobile RAMs. With PASR, self refresh may be restricted to variable portions of the total array. The selection comprises: * all four banks (default) * two banks * one bank * half of one bank * a quarter of one bank. Data written to the non-activated memory sections will get lost after a period defined by tREF (see Table 15).
2.2.1.7
Temperature Compensated Self Refresh (TCSR) with OnChip Temperature Sensor
DRAM devices store data as electrical charge in tiny capacitors that require a periodic refresh in order to retain the stored information. This refresh requirement heavily depends on the die temperature: * high temperatures correspond to short refresh periods * low temperatures correspond to long refresh periods. The Mobile-RAM is equipped with an on-chip temperature sensor which continuously senses the actual die temperature and adjusts the refresh period in Self Refresh mode accordingly. This makes any programming of the TCSR bits in the Extended Mode Register obsolete. Also, it is the superior solution in terms of compatibility and power-saving, because: * it is fully compatible to all processors that do not support the Extended Mode Register * it is fully compatible to all applications that only write a default (worst case) TCSR value (that is, because of the lack of an external temperature sensor) * it does not require any processor interaction for regular TCSR updates
2.2.1.8
Selectable Drive Strength
The drive strength of the DQ output buffers is selectable via bits A5 and A6. The default value ("half drive strength") is suitable for typical applications of a Mobile-RAM. For heavier loaded systems, a stronger output buffer ("full drive strength") is available. I-V curves for full drive strength and half drive strength can be found in this document.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
13
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.3
State Diagram
FIGURE 4
State Diagram
Rev. 1.22, 2006-12 01132005-06IU-IGVM
14
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4
Commands
TABLE 8
Command Overview
Command NOP ACT RD WR BST PRE ARF MRS - -
1) 2) 3) 4) 5) 6) 7) 8) 9) 10)
CS RAS H L L L L L L L L - - X H L H H H L L L - -
CAS WE DQM X H H L L H H L L - - X H H H L L L H L - - X X X L/H L/H X X X X L H X X
Address
Notes
1)2) 1)2) 1)3) 1)4) 1)4) 1)5) 1)6) 1)7)8)
DESELECT NO OPERATION ACTIVE (Select bank and row) READ (Select bank and column and start read burst) WRITE (Select bank and column and start write burst) BURST TERMINATE or DEEP POWER DOWN PRECHARGE (Deactivate row in bank or banks) AUTO REFRESH or SELF REFRESH (enter self refresh mode) MODE REGISTER SET Data Write / Output Enable Write Mask / Output Disable (High-Z)
Bank / Row Bank / Col Bank / Col X Code X Opcode - -
1)9) 1)10) 1)10)
CKE is HIGH for all commands shown except SELF REFRESH and DEEP POWER DOWN. DESELECT and NOP are functionally interchangeable. BA0, BA1 provide bank address, and A0 - A12 provide row address. BA0, BA1 provide bank address, A0 - A9 provide column address; A10 HIGH enables the Auto Precharge feature (nonpersistent), A10 LOW disables the Auto Precharge feature. This command is BURST TERMINATE if CKE is HIGH, DEEP POWER DOWN if CKE is LOW. The BURST TERMINATE command is defined for READ or WRITE bursts with Auto Precharge disabled only. A10 LOW: BA0, BA1 determine which bank is precharged.A10 HIGH: all banks are precharged and BA0, BA1 are "Don't Care". This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. Internal refresh counter controls row and bank addressing; all inputs and I/Os are "Don't Care" except for CKE. BA0, BA1 select either the Mode Register (BA0 = 0, BA1 = 0) or the Extended Mode Register (BA0 = 0, BA1 = 1); other combinations of BA0, BA1 are reserved; A0 - A12 provide the opcode to be written to the selected mode register. DQM LOW: data present on DQs is written to memory during write cycles; DQ output buffers are enabled during read cycles;DQM HIGH: data present on DQs are masked and thus not written to memory during write cycles; DQ output buffers are placed in High-Z state (two clocks latency) during read cycles.
Address (A0 - A12, BA0, BA1), write data (DQ0 - DQ15) and command inputs (CKE, CS, RAS, CAS, WE, DQM) are all registered on the positive edge of CLK. Figure 5 shows the basic timing parameters, which apply to all commands and operations.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
15
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 5
Address / Command Inputs Timing Parameters
TABLE 9
Inputs Timing Parameters
Parameter Symbol min. Clock cycle time Clock frequency Clock high-level width Clock low-level width Address and command input setup time Address and command input hold time CL = 3 CL = 2 CL = 3 CL = 2 - 7.5 max. -- -- 133 105 -- -- -- -- ns ns MHz MHz ns ns ns ns -- -- -- -- -- -- -- -- Unit Notes
tCK fCK tCH tCL tIS tIH
7.5 9.5 -- -- 2.5 2.5 1.5 0.8
Rev. 1.22, 2006-12 01132005-06IU-IGVM
16
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.1
NO OPERATION (NOP)
FIGURE 6
No operation Command
The NO OPERATION (NOP) command is used to perform a NOP to a Mobile-RAM which is selected (CS = LOW). This prevents unwanted commands from being registered during idle states. Operations already in progress are not affected.
2.4.2
DESELECT
The DESELECT function (CS = HIGH) prevents new commands from being executed by the Mobile-RAM. The Mobile-RAM is effectively deselected. Operations already in progress are not affected.
2.4.3
MODE REGISTER SET
FIGURE 7
Mode Register Set Command
The Mode Register and Extended Mode Register are loaded via inputs A0 - A12 (see mode register descriptions in Chapter 2.2). The MODE REGISTER SET command can only be issued when all banks are idle and no bursts are in progress. A subsequent executable command cannot be issued until tMRD is met.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
17
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 8
Mode Register Definition
TABLE 10
Timing Parameters for Mode Register Set Command
Parameter Symbol min. MODE REGISTER SET command period - 7.5 max. -- Units Notes
tMRD
2
tCK
--
2.4.4
ACTIVE
FIGURE 9
ACTIVE command
Before any READ or WRITE commands can be issued to a bank within the Mobile-RAM, a row in that bank must be "opened" (activated). This is accomplished via the ACTIVE command and addresses A0 - A12, BA0 and BA1 (see Figure 9), which decode and select both the bank and the row to be activated. After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the tRCD specification. A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been "closed" (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by tRC. A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by tRRD
Rev. 1.22, 2006-12 01132005-06IU-IGVM
18
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 10
Bank Activate Timings
TABLE 11
Timing Parameters for ACTIVE Command
Parameter Symbol min. ACTIVE to ACTIVE command period ACTIVE to READ or WRITE delay ACTIVE bank A to ACTIVE bank B delay - 7.5 max. -- -- -- ns ns ns
1) 1) 1)
Units
Notes
tRC tRCD tRRD
67 19 15
1) These parameters account for the number of clock cycles and depend on the operating frequency as follows:no. of clock cycles = specified delay / clock period; round up to next integer.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
19
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.5
READ
FIGURE 11
READ Command
Subsequent to programming the mode register with CAS latency and burst length, READ bursts are initiated with a READ command, as shown in Figure 11. Basic timings for the DQs are shown in Figure 12; they apply to all read operations and therefore are omitted from all subsequent timing diagrams. The starting column and bank addresses are provided with the READ command and Auto Precharge is either enabled or disabled for that burst access. If Auto Precharge is enabled, the row being accessed starts precharge at the completion of the burst, provided tRAS has been satisfied. For the generic READ commands used in the following illustrations, Auto Precharge is disabled.
FIGURE 12
Basic READ Timing Parameters for DQs
Rev. 1.22, 2006-12 01132005-06IU-IGVM
20
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
TABLE 12
Timing Parameters for READ
Parameter Symbol min. Access time from CLK DQ low-impedance time from CLK DQ high-impedance time from CLK Data out hold time DQM to DQ High-Z delay (READ Commands) ACTIVE to ACTIVE command period ACTIVE to READ or WRITE delay ACTIVE to PRECHARGE command period PRECHARGE command period CL = 3 CL = 2 - 7.5 max. 5.4 6.0 -- 7.0 -- 2 -- -- 100k -- ns ns ns ns ns -- -- -- --
1) 1) 1) 1)
Units
Notes
tAC tAC
tLZ tHZ tOH tDQZ tRC tRCD tRAS tRP
- - 1.0 3.0 2.5 -- 67 19 45 19
-
tCK
ns ns ns ns
1) These parameters account for the number of clock cycles and depend on the operating frequency as follows:no. of clock cycles = specified delay / clock period; round up to next integer.
During READ bursts, the valid data-out element from the starting column address is available following the CAS latency after the READ command. Each subsequent data-out element is valid nominally at the next positive clock edge. Upon completion of a READ burst, assuming no other READ command has been initiated, the DQs go to High-Z state. Figure 13 and Figure 14 show single READ bursts for each supported CAS latency setting.
FIGURE 13
Single READ Burst (CAS Latency = 2)
Rev. 1.22, 2006-12 01132005-06IU-IGVM
21
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 14
Single READ Burst (CAS Latency = 3)
Data from any READ burst may be concatenated with data from a subsequent READ command. In either case, a continuous flow of data can be maintained. A READ command can be initiated on any clock cycle following a previous READ command and may be performed to the same or a different (active) bank. The first data element from the new burst follows either the last element of a completed burst (Figure 15) or the last desired data element of a longer burst which is being truncated (Figure 16). The new READ command should be issued x cycles after the first READ command (where x equals the number of desired data elements).
FIGURE 15
Consecutive READ Bursts
Rev. 1.22, 2006-12 01132005-06IU-IGVM
22
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 16
Random READ Bursts
Non-consecutive READ bursts are shown in Figure 17.
FIGURE 17
Non-Consecutive READ Bursts
Rev. 1.22, 2006-12 01132005-06IU-IGVM
23
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.5.1
READ Burst Termination
Data from any READ burst may be truncated using the BURST TERMINATE command (see Page 35), provided that Auto Precharge was not activated. The BURST TERMINATE latency is equal to the CAS latency (that is, the BURST TERMINATE command must be issued x clock cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency for READ bursts minus 1). This is shown in Figure 18. The BURST TERMINATE command may be used to terminate a full-page READ which does not self-terminate.
FIGURE 18
Terminating a READ Burst
2.4.5.2
Clock Suspend Mode for READ Cycles
Clock suspend mode allows the extension of any read burst in progress by a variable number of clock cycles. As long as CKE is registered LOW, the following internal clock pulse(s) will be ignored and data on DQ will remain driven, as shown in Figure 19.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
24
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 19
Clock Suspend Mode for READ Bursts
2.4.5.3
READ - DQM Operation
DQM may be used to suppress read data and place the output buffers into High-Z state. The generic timing parameters as listed in Table 12 also apply to this DQM operation. The read burst in progress is not affected and will continue as programmed.
FIGURE 20
READ Burst - DQM Operation
Rev. 1.22, 2006-12 01132005-06IU-IGVM
25
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.5.4
READ to WRITE
A READ burst may be followed by or truncated with a WRITE command. The WRITE command can be performed to the same or a different (active) bank. Care must be taken to avoid bus contention on the DQs; therefore it is recommended that the DQs are held in High-Z state for a minimum of 1 clock cycle. This can be achieved by either delaying the WRITE command, or suppressing the data-out from the READ by pulling DQM HIGH two clock cycles prior to the WRITE command, as shown in Figure 21. With the registration of the WRITE command, DQM acts as a write mask: when asserted HIGH, input data will be masked and no write will be performed.
FIGURE 21
READ to WRITE Timing
Rev. 1.22, 2006-12 01132005-06IU-IGVM
26
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.5.5
READ to PRECHARGE
A READ burst may be followed by, or truncated with a PRECHARGE command to the same bank, provided that Auto Precharge was not activated. This is shown in Figure 22. The PRECHARGE command should be issued x clock cycles before the clock edge at which the last desired data element is valid (where x equals the CAS latency for READ bursts minus 1). Following the PRECHARGE command, a subsequent ACTIVE command to the same bank cannot be issued until tRP is met. Note that part of the row precharge time is hidden during the access of the last data elements. In the case of a READ being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same READ burst with Auto Precharge enabled. The disadvantage of the PRECHARGE command is that it requires that the command and address busses be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate bursts.
FIGURE 22
READ to PRECHARGE Timing
Rev. 1.22, 2006-12 01132005-06IU-IGVM
27
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.6
WRITE
FIGURE 23
WRITE Command
WRITE bursts are initiated with a WRITE command, as shown in Figure 23. Basic timings for the DQs are shown in Figure 24; they apply to all write operations. The starting column and bank addresses are provided with the WRITE command, and Auto Precharge is either enabled or disabled for that access. If Auto Precharge is enabled, the row being accessed is precharged at the completion of the write burst. For the generic WRITE commands used in the following illustrations, Auto Precharge is disabled.
FIGURE 24
Basic WRITE Timing Parameters for DQs
During WRITE bursts, the first valid data-in element is registered coincident with the WRITE command, and subsequent data elements are registered on each successive positive edge of CLK. Upon completion of a burst, assuming no other commands have been initiated, the DQs remain in High-Z state, and any additional input data is ignored. Figure 25 and Figure 26 show a single WRITE burst for each supported CAS latency setting.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
28
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
TABLE 13
Timing Parameters for WRITE
Parameter Symbol min. DQ and DQM input setup time DQ and DQM input hold time DQM write mask latency ACTIVE to ACTIVE command period ACTIVE to READ or WRITE delay ACTIVE to PRECHARGE command period WRITE recovery time PRECHARGE command period - 7.5 max. -- -- -- -- -- 100k -- -- ns ns -- -- --
1) 1) 1) 1) 1)
Units
Notes
tIS tIH tDQW tRC tRCD tRAS tWR tRP
1.5 0.8 0 67 19 45 14 19
tCK
ns ns ns ns ns
1) These parameters account for the number of clock cycles and depend on the operating frequency as follows:no. of clock cycles = specified delay / clock period; round up to next integer.
FIGURE 25
WRITE Burst (CAS Latency = 2)
Rev. 1.22, 2006-12 01132005-06IU-IGVM
29
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 26
WRITE Burst (CAS Latency = 3)
Data for any WRITE burst may be concatenated with or truncated with a subsequent WRITE command. In either case, a continuous flow of input data can be maintained. A WRITE command can be issued on any positive edge of clock following the previous WRITE command. The first data element from the new burst is applied after either the last element of a completed burst (Figure 27) or the last desired data element of a longer burst which is being truncated (Figure 28). The new WRITE command should be issued x cycles after the first WRITE command (where x equals the number of desired data elements).
FIGURE 27
Consecutive WRITE Bursts
Rev. 1.22, 2006-12 01132005-06IU-IGVM
30
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 28
Random WRITE Bursts
Non-consecutive WRITE bursts are shown in Figure 29.
FIGURE 29
Non-Consecutive WRITE Bursts
Rev. 1.22, 2006-12 01132005-06IU-IGVM
31
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.6.1
WRITE Burst Termination
Data from any WRITE burst may be truncated using the BURST TERMINATE command (see Page 35), provided that Auto Precharge was not activated. The input data provided coincident with the BURST TERMINATE command will be ignored. This is shown in Figure 30. The BURST TERMINATE command may be used to terminate a full-page WRITE which does not selfterminate.
FIGURE 30
Terminating a WRITE Burst
2.4.6.2
Clock Suspend Mode for WRITE Cycles
Clock suspend mode allows the extension of any WRITE burst in progress by a variable number of clock cycles. As long as CKE is registered LOW, the following internal clock pulse(s) will be ignored and no data will be captured, as shown in Figure 31.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
32
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 31
Clock Suspend Mode for WRITE Bursts
2.4.6.3
WRITE - DQM Operation
DQM may be used to mask write data: when asserted HIGH, input data will be masked and no write will be performed. The generic timing parameters as listed in Table 13 also apply to this DQM operation. The write burst in progress is not affected and will continue as programmed.
FIGURE 32
WRITE Burst - DQM Operation
Rev. 1.22, 2006-12 01132005-06IU-IGVM
33
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.6.4
WRITE to READ
A WRITE burst may be followed by, or truncated with a READ command. The READ command can be performed to the same or a different (active) bank. With the registration of the READ command, data inputs will be ignored and no WRITE will be performed, as shown in Figure 33.
FIGURE 33
WRITE to READ Timing
2.4.6.5
WRITE to PRECHARGE
A WRITE burst may be followed by, or truncated with a PRECHARGE command to the same bank, provided that Auto Precharge was not activated. This is shown in Figure 34. The PRECHARGE command should be issued tWR after the clock edge at where the last desired data element of the WRITE burst was registered. Additionally, when truncating a WRITE burst, DQM must be pulled to mask input data presented during tWR prior to the PRECHARGE command. Following the PRE-CHARGE command, a subsequent ACTIVE command to the same bank cannot be issued until tRP is met. In the case of a WRITE being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same WRITE burst with Auto Precharge enabled. The disadvantage of the PRECHARGE command is that it requires that the command and address busses to be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate bursts.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
34
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 34
WRITE to PRECHARGE Timing
2.4.7
BURST TERMINATE
FIGURE 35
BURST TERMINATE Command
The BURST TERMINATE command is used to truncate READ or WRITE bursts (with Auto Precharge disabled). The most recently registered READ or WRITE command prior to the BURST TERMINATE command will be truncated, as shown in Figure 18 and Figure 30, respectively. The BURST TERMINATE command is not allowed for truncation of READ or WRITE bursts with Auto Precharge enabled.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
35
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.8
PRECHARGE
FIGURE 36
PRECHARGE Command
The PRECHARGE command is used to deactivate (close) the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access a specified time (tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. Otherwise BA0, BA1 are treated as "Don't Care". Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. A PRECHARGE command will be treated as a NOP if there is no open row in that bank, or if the previously open row is already in the process of precharging.
2.4.8.1
AUTO PRECHARGE
Auto Precharge is a feature which performs the same individual-bank precharge functions described above, but without requiring an explicit command. This is accomplished by using A10 to enable Auto Precharge in conjunction with a specific READ or WRITE command. A precharge of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ or WRITE burst. Auto Precharge is nonpersistent in that it is either enabled or disabled for each individual READ or WRITE command. Auto Precharge ensures that the precharge is initiated at the earliest valid stage within a burst. The user must not issue another command to the same bank until the precharge (tRP) is completed. Auto Precharge is equivalent to an explicit PRECHARGE command being issued at the earliest possible time, as described for each burst type.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
36
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
TABLE 14
Timing Parameters for PRECHARGE
Parameter Symbol min. ACTIVE to PRECHARGE command period WRITE recovery time PRECHARGE command period - 7.5 max. 100k -- -- ns ns ns
1) 1) 1)
Units
Notes
tRAS tWR tRP
45 14 19
1) These parameters account for the number of clock cycles and depend on the operating frequency as follows:no. of clock cycles = specified delay / clock period; round up to next integer.
2.4.8.2
CONCURRENT AUTO PRECHARGE
A READ or WRITE burst with Auto Precharge enabled can be interrupted by a subsequent READ or WRITE command issued to a different bank. Figure 37 shows a READ with Auto Precharge to bank n, interrupted by a READ (with or without Auto Precharge) to bank m. The READ to bank m will interrupt the READ to bank n, CAS latency later. The precharge to bank n will begin when the READ to bank m is registered. Figure 38 shows a READ with Auto Precharge to bank n, interrupted by a WRITE (with or without Auto Precharge) to bank m. The precharge to bank n will begin when the WRITE to bank m is registered. DQM should be pulled HIGH two clock cycles prior to the WRITE to prevent bus contention. Figure 39 shows a WRITE with Auto Precharge to bank n, interrupted by a READ (with or without Auto Precharge) to bank m. The precharge to bank n will begin tWR after the new command to bank m is registered. The last valid data-in to bank n is one clock cycle prior to the READ to bank m. Figure 40 shows a WRITE with Auto Precharge to bank n, interrupted by a WRITE (with or without Auto Precharge) to bank m. The precharge to bank n will begin tWR after the WRITE to bank m is registered. The last valid data-in to bank n is one clock cycle prior to the WRITE to bank m.
FIGURE 37
READ with Auto Precharge Interrupted by READ
Rev. 1.22, 2006-12 01132005-06IU-IGVM
37
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 38
READ with Auto Precharge Interrupted by WRITE
FIGURE 39
WRITE with Auto Precharge Interrupted by READ
Rev. 1.22, 2006-12 01132005-06IU-IGVM
38
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 40
WRITE with Auto Precharge Interrupted by WRITE
2.4.9
AUTO REFRESH and SELF REFRESH
The Mobile-RAM requires a refresh of all rows in a rolling interval. Each refresh is generated in one of two ways: * by an explicit AUTO REFRESH command * by an internally timed event in SELF REFRESH mode.
2.4.9.1
AUTO REFRESH
FIGURE 41
AUTO REFRESH Command
AUTO REFRESH is used during normal operation of the Mobile-RAM. The command is nonpersistent, so it must be issued each time a refresh is required. A minimum row cycle time (tRC) is required between two AUTO REFRESH commands. The same rule applies to any access command after the AUTO REFRESH operation. All banks must be precharged prior to the AUTO REFRESH command. The refresh addressing is generated by the internal refresh controller. This makes the address bits "Don't Care" during an AUTO REFRESH command. The Mobile-RAM requires AUTO REFRESH cycles at an average periodic interval of 7.8 s (max.). Partial array mode has no influence on AUTO REFRESH mode.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
39
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 42
Auto Refresh
2.4.9.2
SELF REFRESH
FIGURE 43
SELF REFRESH Entry Command
The SELF REFRESH command can be used to retain data in the Mobile-RAM, even if the rest of the system is powered down. When in the self refresh mode, the Mobile-RAM retains data without external clocking. The SELF REFRESH command is initiated like an AUTO REFRESH command except CKE is LOW. Input signals except CKE, are "Don't Care" during SELF REFRESH. The procedure for exiting SELF REFRESH requires a stable clock prior to CKE returning HIGH. Once CKE is HIGH, NOP commands must be issued for tRC because time is required for a completion of any internal refresh in progress. The use of SELF REFRESH mode introduces the possibility that an internally-timed event can be missed when CKE is raised for exit from SELF REFRESH mode. Upon exit from SELF REFRESH, an extra AUTO REFRESH command is recommended.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
40
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
FIGURE 44
Self Refresh Entry and Exit
TABLE 15
Timing Parameters for AUTO REFRESH and SELF REFRESH
Parameter Symbol min. ACTIVE to ACTIVE command period PRECHARGE command period Refresh period (8192 rows) Self refresh exit time - 7.5 max. -- -- 64 -- ns ns ms
1) 1) 1) 1)
Units
Notes
tRC tRP tREF tSREX
67 19 -- 1
tCK
1) These parameters account for the number of clock cycles and depend on the operating frequency as follows:no. of clock cycles = specified delay / clock period; round up to next integer.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
41
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.10
POWER DOWN
FIGURE 45
Power Down Entry Command
Power-down is entered when CKE is registered LOW (no accesses can be in progress). If power-down occurs when all banks are idle, this mode is referred to as precharge powerdown. If power-down occurs when there is a row active in any bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CLK and CKE. CKE LOW must be maintained
during power-down.
Power-down duration is limited by the refresh requirements of the device (tREF). The power-down state is synchronously exited when CKE is registered HIGH (along with a NOP or DESELECT command). One clock delay is required for power down entry and exit.
FIGURE 46
Power Down Entry and Exit
Rev. 1.22, 2006-12 01132005-06IU-IGVM
42
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
2.4.10.1
DEEP POWER DOWN
The deep power down mode is an unique function on Low Power SDRAM devices with extremely low current consumption. Deep power down mode is entered using the BURST TERMINATE command (see Figure 35) except that CKE is LOW. All internal voltage generators inside the device are stopped and all memory data is lost in this mode. To enter the deep power down mode all banks must be precharged. The deep power down mode is asynchronously exited by asserting CKE HIGH. After the exit, the same command sequence as that used power-up initialization, including the 200s initial pause, must be applied before any other command may be issued (see Figure 3 and Figure 4).
2.5
Function Truth Tables
TABLE 16
Current State Bank n - Command to Bank n
Current State Any Idle CS H L L L L L Row Active L L L Read (AutoPrecharge Disabled) L L L L Write (AutoPrecharge Disabled) L L L L RAS X H L L L L H H L H H L H H H L H CAS X H H L L H L L H L L H H L L H H WE X H H H L L H L L H L L L H L L L Command / Action DESELECT (NOP / continue previous operation) NO OPERATION (NOP / continue previous operation) ACTIVE (select and activate row) AUTO REFRESH MODE REGISTER SET PRECHARGE READ (select column and start READ burst) WRITE (select column and start WRITE burst) PRECHARGE (deactivate row in bank or banks) READ (select column and start new READ burst) WRITE (select column and start new WRITE burst) PRECHARGE (truncate READ burst, start precharge) BURST TERMINATE READ (select column and start READ burst) WRITE (select column and start WRITE burst) PRECHARGE (truncate WRITE burst, start precharge) Notes
1)2)3)4)5)6) 1)2) to 6) 1)2) to 6) 1)2) to 6), 7) 1)2) to 6) 7) 1) to 6), 8) 1) to 6), 9) 1) to 6), 9) 1) to 6),10) 1) to 6), 9) 1) to 6), 9) 1) to 6), 10) 1) to 6), 11) 1) to 6), 9) 1) to 6), 9) 1) to 6), 10)
1) to 6), 11) BURST TERMINATE 1) This table applies when CKEn-1 was HIGH and CKEn is HIGH and after tRC has been met (if the previous state was self refresh).
2) This table is bank-specific, except where noted (that is, the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state). Exceptions are covered in the notes below. 3) Current state definitions see Table 17 4) The following states must not be interrupted by a command issued to the same bank. DESELECT or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and according to Table 20, see also Table 18 5) The following states must not be interrupted by any executable command; DESELECT or NOP commands must be applied on each positive clock edge during these states, see Table 19 6) All states and sequences not shown are illegal or reserved. 7) Not bank-specific; requires that all banks are idle and no bursts are in progress. 8) Same as NOP command in that state.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
43
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
9) READs or WRITEs listed in the Command/Action column include READs or WRITEs with Auto Precharge enabled and READs or WRITEs with Auto Precharge disabled. 10) May or may not be bank-specific. If multiple banks are to be precharged, each must be in a valid state for precharging. 11) Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regardless of bank.
TABLE 17
Current state definitions
Idle Row Active Read Write The bank has been precharged, and tRP has been met. A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. A READ burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. A WRITE burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.
TABLE 18
State Definitions 2
Precharging Row Activating Read with AP Enabled Write with AP Enabled Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is met, the bank is in the "idle" state. Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is met, the bank is in the "row active" state. Starts with registration of a READ command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Starts with registration of a WRITE command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state.
TABLE 19
State Defintions 3
Refreshing Accessing Mode Register Precharging All Starts with registration of an AUTO REFRESH command and ends when tRC is met. Once tRC is met, the SDRAM is in the "all banks idle" state. Starts with registration of a MODE REGISTER SET command and ends when tMRD has been met. Once tMRD is met, the SDRAM is in the "all banks idle" state. Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is met, all banks are in the idle state.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
44
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
TABLE 20
Current State Bank n - Command to Bank m (different bank)
Current State Any Idle Row Activating, Active, or Precharging CS H L X L L L L Read (AutoPrecharge Disabled) L L L L Write (AutoPrecharge Disabled) L L L L Read(with Auto- L Precharge) L L L Write(with Auto- L Precharge) L L L RAS X H X L H H L L H H L L H H L L H H L L H H L CAS X H X H L L H H L L H H L L H H L L H H L L H WE X H X H H L L H H L L H H L L H H L L H H L L Command / Action DESELECT (NOP / continue previous operation) NO OPERATION (NOP / continue previous operation) Any command otherwise allowed to bank n ACTIVE (select and activate row) READ (select column and start READ burst) WRITE (select column and start WRITE burst) PRECHARGE (deactivate row in bank or banks) ACTIVE (select and activate row) READ (select column and start READ burst) WRITE (select column and start WRITE burst) PRECHARGE (deactivate row in bank or banks) ACTIVE (select and activate row) READ (select column and start READ burst) WRITE (select column and start WRITE burst) PRECHARGE (deactivate row in bank or banks) ACTIVE (select and activate row) READ (select column and start READ burst) WRITE (select column and start WRITE burst) PRECHARGE (deactivate row in bank or banks) ACTIVE (select and activate row) READ (select column and start READ burst) WRITE (select column and start WRITE burst) Notes
1)2)3)4)5)6) 1) to 6) 1) to 6) 1) to 6) 1) to 7) 1) to 7) 1) to 6) 1) to 6) 1) to 7) 1) to 8) 1) to 6) 1) to 6) 1) to 7) 1) to 7) 1) to 6) 1) to 6)
1) to 7), 9) 1) to 9) 1) to 6) 1) to 6) 1) to 7), 9) 1) to 7), 9)
1) to 6) PRECHARGE (deactivate row in bank or banks) 1) This table applies when CKEn-1 was HIGH and CKEn is HIGH and after tRC has been met (if the previous state was Self Refresh).
2) This table describes alternate bank operation, except where noted (that is, the current state is for bank n and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable)). Exceptions are covered in the notes below. 3) Current state definitions see Table 21 4) AUTO REFRESH, SELF REFRESH and MODE REGISTER SET commands may only be issued when all banks are idle. 5) A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. 6) All states and sequences not shown are illegal or reserved. 7) READs or WRITEs listed in the Command/Action column include READs or WRITEs with Auto Precharge enabled and READs or WRITEs with Auto Precharge disabled. 8) Requires appropriate DQM masking. 9) Concurrent Auto Precharge: bank n will start precharging when its burst has been interrupted by a READ or WRITE command to bank m.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
45
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
TABLE 21
Current state definitions
Idle Row Active Read Write Read with AP Enabled Write with AP Enabled The bank has been precharged, and tRP has been met A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress A READ burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated A WRITE burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated Starts with registration of a READ command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state Starts with registration of a WRITE command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state
TABLE 22
Truth Table - CKE
CKEn-1 L CKEn L Current State Power Down Self Refresh Clock Suspend Deep Power Down L H Power Down Self Refresh Clock Suspend Deep Power Down H L All Banks Idle Bank(s) Active All Banks Idle Read / Write burst H
1) 2) 3) 4) 5) 6)
Command X X X X DESELECT or NOP DESELECT or NOP X X DESELECT or NOP DESELECT or NOP AUTO REFRESH (valid)
Action Maintain Power Down Maintain Self Refresh Maintain Clock Suspend Maintain Deep Power Down Exit Power Down Exit Self Refresh Exit Clock Suspend Exit Deep Power Down Enter Precharge Power Down Enter Active Power Down Enter Self Refresh Enter Clock Suspend
Notes
1)2)3)4) 1) to 4) 1) to 4) 1) to 4) 1) to 4) 1) to 5) 1) to 4) 1) to 4), 6) 1) to 4) 1) to 4) 1) to 4) 1) to 4) 1) to 4)
H
See Table 16 and Table 20
CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge. Current state is the state immediately prior to clock edge n. COMMAND n is the command registered at clock edge n; ACTION n is a result of COMMAND n. All states and sequences not shown are illegal or reserved. DESELECT or NOP commands should be issued on any clock edges occurring during tRC period. Exit from DEEP POWER DOWN requires the same command sequence as for power-up initialization.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
46
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
3
3.1
Electrical Characteristics
Operating Conditions
TABLE 23
Absolute Maximum Ratings
Parameter Symbol min. Power Supply Voltage Power Supply Voltage for Output Buffer Input Voltage Output Voltage Operation Case Temperature Storage Temperature Power Dissipation Short Circuit Output Current Commercial Extended Values max. 2.7 2.7 V V V V C C C W mA Unit
VDD VDDQ VIN VOUT TC TC TSTG PD IOUT
-0.3 -0.3 -0.3 -0.3 0 -25 -55 - -
VDDQ + 0.3 VDDQ + 0.3
+70 +85 +150 0.7 50
Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.
TABLE 24
Pin Capacitances
Parameter Symbol min. Input capacitance: CLK Input capacitance: all other input Input/Output capacitance: DQ Input/Output capacitance: LDQM and UDQM Values max. 6.0 6.0 5.0 3.0 pF pF pF pF - Unit Notes1)2)
CI1 CI2 CIO
3.0 3.0 3.0 1.5
CIO2
1) These values are not subject to production test but verified by device characterization. 2) Input capacitance is measured according to JEP147 with VDD, VDDQ applied and all other pins (except the pin under test) floating. DQ's should be in high impedance state. This may be achieved by pulling CKE to low level.
Rev. 1.22, 2006-12 01132005-06IU-IGVM
47
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
TABLE 25
Electrical Characteristics
Parameter Symbol min. Power Supply Voltage Power Supply Voltage for DQ Output Buffer Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Values max. 1.95 1.95 V V V V V V - -
2)
Unit
Notes1)
Output leakage current -1.5 1.5 A - 1) 0 C TC 70 C (comm.); -25 C TC 85 C (ext.); All voltages referenced to VSS. VSS and VSSQ must be at same potential. 2) VIH may overshoot to VDD + 0.8 V for pulse width < 4 ns; VIL may undershoot to -0.8 V for pulse width < 4 ns.Pulse width measured at 50%
with amplitude measured between peak voltage and DC reference level.
VDD VDDQ VIH VIL VOH VOL IIL IOL
1.7 1.7 0.8 x VDDQ -0.3
VDDQ + 0.3
0.3 - 0.2 1.0
- - - -
VDDQ - 0.2
- -1.0
3.2
AC Characteristics
TABLE 26
AC Characteristics
Parameter Symbol min. Clock cycle time Clock frequency Access time from CLK Clock high-level width Clock low-level width Address, data and command input setup time Address, data and command input hold time MODE REGISTER SET command period DQ low-impedance time from CLK DQ high-impedance time from CLK Data out hold time DQM to DQ High-Z delay (READ Commands) DQM write mask latency CL = 3 CL = 2 CL = 3 CL = 2 CL = 3 CL = 2 - 7.5 max. -- -- 133 105 6.0 7.0 -- -- -- -- -- -- 7.0 -- 2 -- ns ns MHz MHz ns ns ns ns ns ns -- --
6) 6) 5)
Unit
Notes1)2)3)4)
tCK fCK tAC tCH tCL tIS tIH tMRD tLZ tHZ tOH tDQZ tDQW
7.5 9.5 -- -- - - 2.5 2.5 1.5 0.8 2 1.0 3.0 2.5 -- 0
-- --
tCK
ns ns ns
-- -- --
5)6)
tCK tCK
-- --
Rev. 1.22, 2006-12 01132005-06IU-IGVM
48
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
Parameter
Symbol min.
- 7.5 max. -- -- -- 100k -- -- 64 --
Unit
Notes1)2)3)4)
ACTIVE to ACTIVE command period ACTIVE to READ or WRITE delay ACTIVE bank A to ACTIVE bank B delay ACTIVE to PRECHARGE command period WRITE recovery time PRECHARGE command period Refresh period (8192 rows)
1) 2) 3) 4) 5) 6) 7)
1 Self refresh exit time 0 C TC 70 C (comm.); -25 C TC 85 C (ext.); VDD = VDDQ = 1.70 V to 1.95 V;
tRC tRCD tRRD tRAS tWR tRP tREF tSREX
67 19 15 45 14 19 --
ns ns ns ns ns ns ms
7) 7) 7) 7) 8) 7)
-- --
tCK
All parameters assumes proper device initialization. AC timing tests measured at 0.9 V. The transition time is measured between VIH and VIL; all AC characteristics assume tT = 1 ns. Specified tAC and tOH parameters are measured with a 30 pF capacitive load only as shown in Figure 47. If tT > 1 ns, a value of [0.5 x(tT - 1)] ns has to be added to this parameter. These parameter account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round up to next integer. 8) The write recovery time of tWR = 14 ns allows the use of one clock cycle for the write recovery time when fCK 72 MHz. With fCK > 72 MHz two clock cycles for tWR are mandatory. Qimonda Technologies recommends to use two clock cycles for the write recovery time in all applications.
FIGURE 47
I/O 30 pF
3.3
Operating Currents
TABLE 27
Maximum Operating Currents
Parameter & Test Conditions Symbol - 7.5 Operating current: one bank: active / read / precharge, BL = 1, tRC = tRCmin Precharge power-down standby current: all banks idle, CS VIHmin, CKE VILmax, inputs changing once every two clock cycles Precharge power-down standby current with clock stop: all banks idle, CS VIHmin, CKE VILmax, all inputs stable Valuea Unit Notes1)
IDD1 IDD2P
120 1.2
mA mA
2)3)
-
IDD2PS
1.0
mA
-
Rev. 1.22, 2006-12 01132005-06IU-IGVM
49
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
Parameter & Test Conditions
Symbol - 7.5
Valuea
Unit
Notes1)
Precharge non power-down standby current: all banks idle, CS VIHmin, CKE VIHmin, inputs changing once every two clock cycles
IDD2N
26
mA
-
Precharge non power-down standby current with clock stop: IDD2NS all banks idle, CS VIHmin, CKE VIHmin, all inputs stable Active power-down standby current: one bank active, CS VIHmin, CKE VILmax, inputs changing once every two clock cycles
2.0 2.0
mA mA
- -
IDD3P
IDD3PS Active power-down standby current with clock stop: one bank active, CS VIHmin, CKE VILmax, all inputs stable
Active non power-down standby current: one bank active, CS VIHmin, CKE VIHmin, inputs changing once every two clock cycles
1.5 30
mA mA
- -
IDD3N
Active non power-down standby current with clock stop: IDD3NS one bank active, CS VIHmin, CKE VIHmin, all inputs stable Operating burst read current: all banks active; continuous burst read, inputs changing once every two clock cycles Auto-Refresh current: clock cycles
3.0 90
mA mA
- -
IDD4
tRC = tRCmin, "burst refresh", inputs changing once every two
Self Refresh current:self refresh mode, CS VIHmin, CKE
IDD5
180
mA
-
VILmax, all inputs stable
IDD6
See Table 28
-
noted 2) These values are measured with tCK = 7.5 ns 3) All parameters are measured with no output loads. 4) Value shown as typical.
4) IDD7 25 A Deep Power Down current 1) 0 C TC 70 C (comm.); -25 C TC 85 C (ext.); VDD = VDDQ = 1.70 V to 1.95 V;Recommended Operating Conditions unless otherwise
TABLE 28
Self Refresh Currents
Parameter & Test Conditions Max. Temperature 85 C 70 C 45 C 25 C Self Refresh Current: Self refresh mode, half array activation(PASR = 001) 85 C 70 C 45 C 25 C Symbol typ. Values max. 1200 - - - 940 - - - A - Units Notes1)2)
Self Refresh Current: Self refresh mode, full array activation(PASR = 000)
IDD6
1020 680 450 410 800 530 400 360
Rev. 1.22, 2006-12 01132005-06IU-IGVM
50
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
Parameter & Test Conditions
Max. Temperature 85 C 70 C 45 C 25 C
Symbol typ.
Values max. 800 - - -
Units
Notes1)2)
Self Refresh Current: Self refresh mode, quarter array activation(PASR = 010)
IDD6
680 500 370 340
A
-
1) 0 C TC 70 C (comm.); -25 C TC 85 C (ext.); VDD = VDDQ = 1.70 V to 1.95 V 2) The On-Chip Temperature Sensor (OCTS) adjusts the refresh rate in self refresh mode to the component's actual temperature with a much finer resolution that supported by the 4 distinct temperature levels as defined by JEDEC for TCSR. At production test, the sensor is calibrated, and IDD6 max. current is measured at 85C. Typ. values are obtained from device characterization.
3.4
Pullup and Pulldown Characteristics
TABLE 29
Half Drive Strength (Default) and Full Drive Strength
Voltag e (V) Half Drive Strength (Default) Pull-Down Current (mA) Nominal Low 0.00 0.40 0.65 0.85 1.00 1.40 1.50 1.65 1.80 1.95 0.0 15.1 20.3 22.0 22.6 23.5 23.6 23.8 23.9 24.0 Nominal High 0.0 20.5 28.5 32.0 33.5 35.0 35.3 35.5 35.7 35.9 Pull-Up Current (mA) Nominal Low -19.7 -18.8 -18.2 -17.6 -16.7 -9.4 -6.6 -1.8 3.8 9.8 Nominal High -33.4 -32.0 -31.0 -29.9 -28.7 -20.4 -17.1 -11.4 -4.8 2.5 Full Drive Strength Pull-Down Current (mA) Nominal Low 0.0 30.2 40.5 43.9 45.2 46.9 47.2 47.5 47.7 48.0 Nominal High 0.0 41.0 57.0 64.0 67.0 70.0 70.5 71.0 71.4 71.8 Pull-Up Current (mA) Nominal Low -39.3 -37.6 -36.4 -35.1 -33.3 -18.8 -13.2 -3.5 7.5 19.6 Nominal High -66.7 -63.9 -61.9 -59.8 -57.3 -40.7 -34.1 -22.7 -9.6 5.0
The above characteristics are specified under nominal process variation / conditionTemperature (Tj): Nominal = 50 C, VDDQ: Nominal = 1.80 V
Rev. 1.22, 2006-12 01132005-06IU-IGVM
51
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
4
Package Outlines
FIGURE 48
PG-TFBGA-54 (Plastic Green - Thin Fine Ball Grid Array Package)
Rev. 1.22, 2006-12 01132005-06IU-IGVM
52
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
List of Figures
Figure 1 Standard Ballout 512-Mbit Mobile-RAM 5 Figure 2 Functional Block Diagram 6 Figure 3 Power-Up Sequence and Mode Register Sets 8 Figure 4 State Diagram 14 Figure 5 Address / Command Inputs Timing Parameters 16 Figure 6 No operation Command 17 Figure 7 Mode Register Set Command 17 Figure 8 Mode Register Definition 18 Figure 9 ACTIVE command 18 Figure 10 Bank Activate Timings 19 Figure 11 READ Command 20 Figure 12 Basic READ Timing Parameters for DQs 20 Figure 13 Single READ Burst (CAS Latency = 2) 21 Figure 14 Single READ Burst (CAS Latency = 3) 22 Figure 15 Consecutive READ Bursts 22 Figure 16 Random READ Bursts 23 Figure 17 Non-Consecutive READ Bursts 23 Figure 18 Terminating a READ Burst 24 Figure 19 Clock Suspend Mode for READ Bursts 25 Figure 20 READ Burst - DQM Operation 25 Figure 21 READ to WRITE Timing 26 Figure 22 READ to PRECHARGE Timing 27 Figure 23 WRITE Command 28 Figure 24 Basic WRITE Timing Parameters for DQs 28 Figure 25
Rev. 1.22, 2006-12 01132005-06IU-IGVM
53
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
WRITE Burst (CAS Latency = 2) 29 Figure 26 WRITE Burst (CAS Latency = 3) 30 Figure 27 Consecutive WRITE Bursts 30 Figure 28 Random WRITE Bursts 31 Figure 29 Non-Consecutive WRITE Bursts 31 Figure 30 Terminating a WRITE Burst 32 Figure 31 Clock Suspend Mode for WRITE Bursts 33 Figure 32 WRITE Burst - DQM Operation 33 Figure 33 WRITE to READ Timing 34 Figure 34 WRITE to PRECHARGE Timing 35 Figure 35 BURST TERMINATE Command 35 Figure 36 PRECHARGE Command 36 Figure 37 READ with Auto Precharge Interrupted by READ 37 Figure 38 READ with Auto Precharge Interrupted by WRITE 38 Figure 39 WRITE with Auto Precharge Interrupted by READ 38 Figure 40 WRITE with Auto Precharge Interrupted by WRITE 39 Figure 41 AUTO REFRESH Command 39 Figure 42 Auto Refresh 40 Figure 43 SELF REFRESH Entry Command 40 Figure 44 Self Refresh Entry and Exit 41 Figure 45 Power Down Entry Command 42 Figure 46 Power Down Entry and Exit 42 Figure 47 49 Figure 48 PG-TFBGA-54 (Plastic Green - Thin Fine Ball Grid Array Package) 52
Rev. 1.22, 2006-12 01132005-06IU-IGVM
54
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
Table of Contents
1 1.1 1.2 1.3 1.4 2 2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.1.4 2.2.1.5 2.2.1.6 2.2.1.7 2.2.1.8 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.5.1 2.4.5.2 2.4.5.3 2.4.5.4 2.4.5.5 2.4.6 2.4.6.1 2.4.6.2 2.4.6.3 2.4.6.4 2.4.6.5 2.4.7 2.4.8 2.4.8.1 2.4.8.2 2.4.9 2.4.9.1 2.4.9.2 2.4.10 2.4.10.1 2.5 3 3.1 3.2 3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 5 5 7
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power On and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Write Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Partial Array Self Refresh (PASR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Temperature Compensated Self Refresh (TCSR) with On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . 13 Selectable Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 NO OPERATION (NOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 DESELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 MODE REGISTER SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 READ Burst Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Clock Suspend Mode for READ Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 READ - DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 READ to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 READ to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 WRITE Burst Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Clock Suspend Mode for WRITE Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 WRITE - DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 WRITE to READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 WRITE to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 BURST TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 AUTO PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 CONCURRENT AUTO PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 AUTO REFRESH and SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 AUTO REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 POWER DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DEEP POWER DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Function Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 47 48 49
Rev. 1.22, 2006-12 01132005-06IU-IGVM
55
Data Sheet.
HY[B/E]18L512160BF-7.5 512-Mbit Mobile-RAM
3.4 4 Pullup and Pulldown Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Rev. 1.22, 2006-12 01132005-06IU-IGVM
56
Data Sheet.
Edition 2006-12 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 Munchen, Germany (c) Qimonda AG 2006. All Rights Reserved. Legal Disclaimer The information given in this Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Under no circumstances may the Qimonda product as referred to in this Data Sheet be used in 1. Any applications that are intended for military usage (including but not limited to weaponry), or 2. Any applications, devices or systems which are safety critical or serve the purpose of supporting, maintaining, sustaining or protecting human life (such applications, devices and systems collectively referred to as "Critical Systems"), if a) A failure of the Qimonda product can reasonable be expected to - directly or indirectly (i) Have a detrimental effect on such Critical Systems in terms of reliability, effectiveness or safety; or (ii) Cause the failure of such Critical Systems; or b) A failure or malfunction of such Critical Systems can reasonably be expected to - directly or indirectly (i) Endanger the health or the life of the user of such Critical Systems or any other person; or (ii) Otherwise cause material damages (including but not limited to death, bodily injury or significant damages to property, whether tangible or intangible). www.qimonda.com


▲Up To Search▲   

 
Price & Availability of HYE18L512160BF-75

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X